Representativeness-Based Instance Selection for Intrusion Detection
نویسندگان
چکیده
With the continuous development of network technology, an intrusion detection system needs to face efficiency and storage requirement when dealing with large data. A reasonable way alleviating this problem is instance selection, which can reduce space improve by selecting representative instances. An not only in its class but also different classes. This representativeness reflects importance instance. Since existing selection algorithm does take into account above situations, some selected instances are redundant important removed, increasing reducing efficiency. Therefore, a new proposed considers influence all same on classes Moreover, it as advantageous factor. Based representativeness, two algorithms handle balanced imbalanced data problems for detection. One representative-based data, named RBIS selects proportion from each class. The other RBIS-IM majority according number minority Compared benchmark sets detection, experimental results verify effectiveness demonstrate that achieve better balance between accuracy reduction rate or rate.
منابع مشابه
A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملEntropy Based Fuzzy Rule Weighting for Hierarchical Intrusion Detection
Predicting different behaviors in computer networks is the subject of many data mining researches. Providing a balanced Intrusion Detection System (IDS) that directly addresses the trade-off between the ability to detect new attack types and providing low false detection rate is a fundamental challenge. Many of the proposed methods perform well in one of the two aspects, and concentrate on a su...
متن کاملOutlier Detection Based on Local Kernel Regression for Instance Selection
In this paper, we propose an outlier detection approach based on local kernel regression for instance selection. It evaluates the reconstruction error of instances by their neighbors to identify the outliers. Experiments are performed on the synthetic and real data sets to show the efficacy of the proposed approach in comparison with the existing counterparts.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Security and Communication Networks
سال: 2021
ISSN: ['1939-0122', '1939-0114']
DOI: https://doi.org/10.1155/2021/6638134